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Fibonacci orbits and SU(2)-dynamics 

Holger Wagner and Peter Kramer 
lnstitut flir Theoretische Physik, Univenit2t~Tiibingen, Auf der MorgensteUe 14, 
72076 Tiibingen, Germany 

Received 8 December 1994 

Abstract. Motivated by an interpretation of the Rbonacci sequence as a subset of the free 
group Fz we describe orbits on finite subgroups of SU(2). A prerequisite for the calculation 
of these orbits is the knowledge of aIl generating sets of finite subgroups of SU(2). In order 
to facilitate this problem we introduce an equivalence relation between generating sets which 
on be extended to another one between Rbonacd orbits. Additionally. we describe a possible 
experiment with quasipedodic dynamics. 

1. htroduetion 

In this paper, which is based on the diploma thesis [14], we develop a group-theoretical 
method to describe one-dimensional, quasiperiodic dynamics, where the dynamics is defined 
by a recursive mapping of the elements of SU(2). Hence, one can consider the dynamics 
from two different points of view. For the first instance, disregarding the physical 
applications, the recursive mapping can be investigated as a dynamical system. As a 
consequence, we concentrate on the investigation of cases in which the recurrence relation 
results in periodic orbits. 

The other point of view is the description of physical systems with quasiperiodic 
structure. In this paper, we consider quasiperiodic sequences of matrices of SU(2).  In 
so doing, we interpret the matrices of SU(2)  as time evolution operators of a two-level 
system, i.e. the underlying quasiperiodic structure is considered as a quasiperiodic sequence 
of time intervals. 

The one-dimensional, quasiperiodic structure to be investigated is the Fibonacci 
 sequence^ (resp. generalized Fibonacci. sequences). The starting point of the algebraic 
approach is the fact that the local inflation rule of the Fibonacci sequence can be expressed 
as an element of the group of automorphisms of the free group Fz. If Fz is given by 
F2 = (a, b) then the Fibonacci sequence can be interpreted as the orbit starting at a under 
the positive powers of the automorphism. By homomorphisms this subset of Fz can be 
mapped in each group which can be generated by two elements. The images of the Fibonacci 
sequence under the homomorphisms are called Fibonacci orbits. In sections 2 and 3 this is 
outlined in detail. 

Section 4 deals with the determination and classification of all possibilities of generating 
a finite subgroup of SU(2) by two elements. This analysis results in a representative of 
each equivalence class of generating sets. These representatives can be used to calculate the 
Fibonacci orbits by a recurrence relation, where the equivalence relation between generating 
sets can be extended in a natural manner to an equivalence relation between Fibonacci 
orbits. The definition of the equivalence relation together with other general remarks about 
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Fibonacci orbits can be found in section 5.1. In section 5.2, we show that the condition for 
the periodicity of a Fibonacci orbit on the cyclic subgroup C. of SU(2) can be formulated 
as an eigenvalue problem in the commutative ring Z/nZ.  Actually, we cannot give the 
general solution of this problem but we can derive criteria which reduce the number of 
possible solutions 

In section 6, we tum to the physical properties of a quasiperiodic system. The starting 
point is an interpretation of the well known spin echo experiment as a periodic SU(2)- 
dynamics. This interpretation bases on the fact that in the spin echo experiment a two-level 
system which passes altematingly through two types of time intervals. As a consequence, 
one can measure a periodic S0(3)-dynamics of the expectations of the magnetic moment. 
By concatenating the two types of intervals of the spin echo experiment by the method of 
the Fibonacci sequence, one obtains a quasiperiodic version of the spin echo experiment. 

H Wagner and P Kramer 

2. The free group Fz and Fibonacci automorphism 

In order to explain which maps we are interested in, let us start from the definition of free 
groups. 

Definition 2.1. A group F, is called free of rank n with generating set (fi; 1 < i < n],  if 
the following statements are true: 

(i) F, := (fi; 1 < i < n ) ,  i.e. Fn is generated from the fi's. 
(ii) E G is a group generated by n elements g; (1 < i < n), i.e. G = (g;; 1 < i < n ) .  then 

there exists an epimorphism (surjective'homomorphism) p : F. H G, p( f i )  = g; for 
a l l l < i $ n .  

Starting from this definition one can prove 14, chapter I, section 191, that free groups 
exist and are unique (up to isomorphisms) for all n E N. The existence proof in [4] contains 
the connection to another possibility of defining free groups (cf [9, p 121): given the set 
E := (fi, A-'; 1 < i < n ) .  Any finite sequence formed from elements of C is called a 
word. Let the multiplication of words be defined by concatenation. If one introduces the 
equivalence relations A-' fi = fi A-' = id (empty word), the set of all equivalence classes, 
usually represented by the so-called freely reduced words, becomes the free group F.. 

Let G = (gi; 1 < i < n )  be a group. Then there exists (compare definition 2.1) an 
epimorphism p : F. H G, p(f i )  = gj (1 < i < n). According to the homomorphism 
theorem the following assertion is valid 

G E F. /Ker(p) . (2.1) 

Given a subset S = Is,, . . . , s,) (m E N U {bo)) of Ker(p) with the property Ker(p) = 
( f SI f-', . . . , fs, f-'; f E F. ), then the group G Z F,, /Ker(p) is fixed uniquely (up 
to isomorphisms) by the generators fi of F, and the set S. This leads to the notation 

G := (gl, ..., gn;rl  = ... = r, = id) 

where the definitions g; := p(fi),  r j ~  := p(sj) are used. 

defined by 
Consider the homomorphisms pe : F2 = (a, 6)  H Fz = (a, b) (e E Z), which are 

a t + b  [ b H b'a 
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These mappings have inverses 

(2.3) 

Thus, the pt’s  are elements of the group of automorphism 0 2  of the free group F2. By 
induction one can show the identity 

K @ ;  (b) ,pJ (a)) = K(b,a)(-’)q (2.4) 
where the group commutator K ( g , h )  is defined by K ( g , h )  := g-’h-’gh. Note, that 
equation (2.4) is a special case of Nielsen’s result ([lo]) that one can write K(c(b) ,  e(a)) 
as 

(2.5) 
(f E F ~ ,  m E {I, 2)) for each f E C J ~ .  

On the other hand, p1 is the standard local infiation rule of the Fibonacci sequence. Tbi 
allows an interpretation of the Fibonacci sequence in terms of Fz: The Fibonacci sequence 
is the orbit starting at a under the positive powers of the automorphism pl ,  i.e. 

(2.6) 
where the multiplication of automorphism p q is defined by the concatenation of mappings 
qop. Because of this interpretation we call the pc’s (generalized) Fibonacci automorphisms 

K O @ ) ,  Ua) )  = f-’K(b,a)‘-’’ f 

Fibonacci sequence := ( p ;  (a); n E NO} 

(cf PI). 

3. Fibonaca sequences under homomorphisms 

Given an epimorphism p : Fz = (a. b) H G = ( x ,  y); p(a) = x ,  p(b) = y. Consider 
the Fibonacci sequence {p ;  (a); n E NO}. The image ofthe Fibonacci sequence relating to 
the homomorphism p is called Fibonacci orbit, i.e. 

(3.1) Fibonacci orbit := (M,: n E NO} := {&$(a)); n E NO}. 
By induction one can prove the recurrence relation 

M ~ + I  = Mi Mn-I (3.2) 
which is equivalent to 

M,-1 = MLe Mn+l. (3.3) 
If there is defined an addition of group elements (e.g. if G is a matrix group), then (2.4) 
together with the homomorphism property of p results in an invariant I of the Fibonacci 
orbit 

(3.4) 
In this paper we investigate the cases in which MO, MI E SU(2, C). Then, as a consequence 
of the Cayley-Hamilton theorem (cf 18, p 400]), we obtain the identity 

I := K ( M i ,  MO) + K(Mo, MI).  

I := tr(K(M0, M l ) )  1. . (3.5) 
Thus, if MO, MI E SU(2, C), the invariant I is equivalent to the Fricke-Vogt invariant 

Definition 3.2. The Fibonacci orbit [Mn; n E No] is called periodic, if there exists p E N 
so that for all m E N, j E IO, 1,. . . , p - 1) the following identity is valid Mj = MjCmp. 

The smallest p with this propexty is called the period. 

i = atr (K(M0,  MI)) - 4 (cf [ill). 
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This definition of periodic Fibonacci orbits is reasonable, because a Fibonacci orbit 
cannot become periodic after finitely many steps. It is easy to check this assertion: assume 
that a Fibonacci orbit becomes periodic after finitely many steps, i.e. there exists a minimum 
n E N, so that Mj = Mj+mp for all n < j .  Then, because of (3.3), Mn-l = Mn-1+,+, which 
contradicts the assumption that n is the minimum number with this property. 

Because iteration (3.2) has recursion depth 2,  we can replace definition 3.1 by the 
equivalent definition 3.2, which is useful for the determination of periods: 

Definition 3.2. The period p is the minimum natural number for which MO = Mp and 

If the period is odd, definition 3.2 together with (2.4) results in a restriction of the group 
commutator: K(Ma, MI) must be the identity or an involution. Thus, if MO, M I  E SU(2) ,  
then K(Mo, M l )  = A12. For consequences we refer to section 5.  

The least common multiple of the orders of all elements of the group G is called the 
exponential exp(G) of G. Let a group G have a finite exponential and let e, k be integers 
with the property 1 = z exp(G) + k (z E E). Then p(pf (a)) = @(.of (a)) for all n E NO, 
i.e. the Fibonacci orbits are the same. 

In the following sections we consider the cases in which G is a finite subgroup of 
SU(2). For these groups there always exists a finite exponential. Additionally all Fibonacci 
orbits are periodic, because there are at most Ord(G)* (Ord(G):= order of G) different 
pairs ( M j ,  Mj+l) in a Fibonacci orbit. 

Note that an investigation of all finite subgroups of SU(2) can be regarded as an 
investigation of all finite subgroups of SL(2, C), since each representation of a finite group 
can be taken (cf [IO, p 661) to a unitary representation by similarity transformation. 

MI = Mpi.1. 

4. The generators of finite subgroups of SU(2) 

4.1. Equivalence classes of generating seis 

Let FZ = (a, b) be the free group of rank 2. In order to determine all Fibonacci orbits in 
finite subgroups of SU(2). we have to know all possibilities of choosing p(a). p(b), so 
that ( ~ ( a ) ,  p ( b ) )  is a finite subgroup of SU(2).  To facilitate this problem, we introduce 
the following equivalence relations: 

Definition 4.1. The generating sets E1 = {fl, f2] and E2 = {gl, gz} are called SU(2)- resp. 
S0(3)-equivalent, if there exists h E SU(2)  resp. S0(3), so that h-' gih = fi (i = 1.2). 

Remark. Subsequently, if we talk about generating sets, we always mean generating 
sets consisting of two elements. The existence of such generating sets will be shown 
in section 4.2 (resp. 4.3). 

We have chosen these equivalence relations because the conjugations with elements of 
SU(2) resp. SO(3) is the greatest subset of isomorphisms which preserves the essential 
properties of the representation matrices like unitarity resp. orthogonality, trace, and 
determinant. Additionally, conjugation with unitary operators is the equivalence relation 
which is used in quantum mechanics and the theory of Hilbert spaces. 

The group SU(2) can be characterized in the following way (uo := 12; U',  UZ, 03 Pauli 
matrices): 
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Let V be a vector space over the field R with basis [U' , u2. u3). Then there exists a map 
i7 : SU(2) H SO(3) defined by II(q)(p) := q-' p q  (q E SU(2). p E V). n is a 
two-to-one epimorphism (n(q) = i l(-q)) onto SO(3). i.e. SU(2)  is a double cover of 
SO(3). 

Definiition4.2. Let S be a subset of SO(3); then iT'(S) is defined by il-'(S) := [h  E 
SU(2). n(h) E S). 

The proof of the next theorem can be found in [16, p 831: 

Theorem4.1. Every finite subgroup of SO(3) is a cyclic group C., a dihedral group D,, 
a tetrahedral group T ,  an octahedral group 0, or an icosahedral group Y. Every finite 
subgroup of SU(2) is a cyclic group Cn', a binary dihedral group 0; = n-' (D,J, a binary 
tetrahedral group T* := n-'(T) ,  a binary octahedral group 0' := n-'(O), or a binary 
icosahedral group Y* := n-'(Y). If two finite subgroups of SO(3) resp. SU(2) are 
isomorphic, then they are conjugate in SO(3) resp. SU(2).  

It is worth noting that the finite subgroups of SU(2)  can be associated with Dynkin 
diagrams (cf [13, appendix]). 

Theorem 4.1 determines all isomorphism classes of finite subgroups of SU(2). Another 
interesting assertion of the theorem is that all finite subgroups of SO(3) resp. SU(2) which 
are elements of the same isomorphism class are conjugate in SO(3)  resp. sU(2) .  Hence, 
to determine all generating sets of an isomorphism class up to SU(2)-equivalence, it is 
sufficient to investigate the generating sets of a faithful representation. 

Theorem4.2. Let G = (g1,gz) be a noncyclic finite subgroup of SO(3). Given any 
fi E n-'({giD, f~ E n-'(Igzl), then F := n-'(G) = (fi, fz) .  

Pmoj n: F H G is an epimorphism with Ker(n) = {li, -121 =: Z. Thus, for each 
element g E G there exists precisely one coset Z t  of Z (t E F )  with Z t  = T*([g]). 
Because G = (gl, gz), each g E G can be written in the formg = g;, . . .g;, (ij 6 {1 ,2 ) ,k  E 
W). Let f be the element of (ft, fz) defined by f := fi, . . . fik. Then n(f) = g. Therefore, 
a representative of each coset of Z in F is contained in (fl, fi). It remains to show that 

Each finite, noncyclic subgroup of SO(3) contains an n involution. Let g E G, g2 = 13. 
As we have mentioned above, (fi, f2)'includes an element f with n(f) = g. Because g 
is an involution, the order off is 4. Since -12 is the bnly involution in SU(2). f2 = -12. 

so -12 E (fly A). 0 

The implication of theorem 4.2 is that each generating set [gl, gz] of a dihedral 
or polyhedral group corresponds to four generating 'sets [fi, f21, {fi, -fzI, I-fi, Jil, 
{-f1. -fz] of the corresponding binary dihedral or binary polyhedral group. If f E 
n-'([g])~and f E rI-1({2]), then 2 = h - l g h  if and only i f f  = q - l f q  or -f = q - l f q .  
Therefore, given fi E n-'({gi]), j E il-'([i;]) <i E {1,2]), the generating sets {gl.gz) 
and { & . i 2 ]  are SO(3)-equivalent if and only if (f1, f2] is SU(Z)-equivalent to one of the 
four sets {fi, f21. Ifi, -fzL I-fi, fil, and I-fi, -fd. 

In the following, we proceed in the following manner. Firstly we construct SU(2)- 
representations of the cyclic groups C, and determine all generating sets of these 
representations. Subsequently we take SO(3)-representations of the dihedral and polyhedral 
groups and find all generating sets up to S0(3)-equivalence. By computing the generating 
sets of the corresponding SU(Z)-representations, we determine all generating sets of the 
binary dihedral resp. binary polyhedral groups up to SLr(Z)-equivalence. 

-12 E ( f l .  f2). 
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Let p , v  : FZ = (a, b)  H G C SO(3) be epimorphisms. An automorphism 
+ : G H G ,  +(p(a)) = u(a) ,  +(p(b))  = u(b)  exists if and only if Kerb)  = Ker(cr). 
Hence, if we know all possibilities of choosing Ker(p), such that Im(p) = G, and if we 
have found all automorphisms of G which are no conjugations in S0(3), then we have 
determined all generating sets of G up to S0(3)-equivalence. 

As we mentioned in section 2, Ker(p) can be described by defining relations. But 
different defining relations can induce the same set Ker(p). Thus, to obtain a general view, 
we will always characterize Im(p) in the following way: 

h ( p )  := ( x , y ;  X" = ym = (xy)P = R4 = ... = Rk = 1) (4.1) 

where x := p(a ) ,  y := p(b);  n, m, p, k E Pi, k > 3. 

generating sets. 

Lemma 4.1. Given h ( p )  in the manner of (4.1). E (i, I%, 5) is an arbihary permutation 
of (n, m, p ) .  then there exists an epimorphism p : FZ H Im(p) with Imb) = Im(p) = 
( 2 , j ;  i2 = E (xy)P = R4 = ... = & = l) ,  where p(a) = 2, p(b)  = j .  For the 
definition of the Rj's we refer to the proof. 

Proof: The set of all permutations of (n, m, p )  is S,, i.e. the symmehic group of rank 3. 
Hence, to prove the lemma, it is sufficient to verify this statement for the generators of the 
S3, e.g. for the transpositions (1 2) and (1 3). 

Therefore, we have to show the following. If h(+) = (x .  y ;  x" = ym = (xy)P = 
R4 = ... = RX = l) ,  then there exists r, U, so that: 

The next lemma (resp. its proof) is important because it simplifies the computation of 

A A  - - 

h ( p )  =Im(r) := (2 . j ;  2 m  = 9" = ( 2 9 ) ~  = l i 4  = . . . = lix = 1) 

h ( p )  = h ( u )  := (2.7; .P = ym = (Zyy = R4 = . .. = Rx = 1) 
with r (a)  := 2,  r(b)  := 9 

u @ )  := X, u(b) := (y).  
One can verify these statements by using the following definitions: 

(i) 2 := r(a) = y - l ;  j := r(b) = x-'. kj is defined by substituting in Rj all 9-l for x 

(U) Z := w(a) = x y ,  J := v(b) = y- ' .  Rj is defined by substituting in Rj all Z y - l  for x 

0 

The group of automorphisms QZ of the free group FZ = (a. b)  contains elements CZ, c3 

with 

and all 2-l for y. 

and all 7-I for y. 

Because the substitution rules are invertible, the groups are identical. 

(cf [5])  which are defined by 

a H a b  

b H b-' 

a H 6-' 
cz { 
c3 I b H a- ' .  

Thus the substitutions which are used in the proof of lemma 4.1 can be interpreted as the 
mapping (~(4. pub)) ++ W j  (a)) .  A C j  ( b ) ) )  ( j  E k 2 D .  
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4.2. The generators of C, 

A cyclic group can be characterized by the property that it can be generated by a single 
element, i.e. C, := ( h ;  h" = i d ) .  In this section we investigate the possibilities of 
generating C,, by two elements. Given the elements x ,  y E C, with O ( x )  = p, O(y) = q 
(p ,  q E N). The orders of the two elements can be written in the form p = rs,  q = i-t, 
where r = gcd(p, q), gcd(s, t )  = 1. Because the orders of all elements of C. must be 
divisors of Ord(C,), n fulfils the equation n = m r s t (m E N). ( xs ) as well as ( y' ) 
are subgroups of C, of order r .  But, on the other hand, C, has precisely one subgroup of 
order r ;  this is ( h'"" ) (cf [7, Chapter II]). Hence, ( xs ) = ( hmsf ) = ( y' ). This results in 
(x' ) ( x )  Cl (y), which implies r < Ord((x) n (y)). Because Ord((x) n (y)) has to be 
a divisor of both Ord((x)) = rs and Ord((y)) = rt ,  it follows that Ord((x) n (y)) = r .  
The product (x)(y) := (ab ;  a E ( x ) .  b E (y)] equals (x. y ) .  since C, is an Abelian group. 
Therefore 

Thus the order of C, is n = r s t .  
Let a faithful representation of C. be defined by 

As a consequence of the above considerations, al l  generating sets of the representation of 
C,, can be written in the form 

e%ip/rs 0 
cn := (( 0 e-&ip/rs ) 3 ( 

where n = r s t ,  gcd(p, rs )  = gcd(q, r t )  = gcd(s, t )  = 1. 

4.3.. The generators of the binary dihedral and the binary polyhedral groups 

(4.3) 

According to [4, Chapter I, section 191 one can define the finite, noncyclic subgroups of 
by 

where we have used the fact that T Z A4 and Y Z As (AK the alternating group of rank k). 
In order to prove that 

0.72 S4 := (x ,y ;x4  = yz = ( x Y ) ~  = i d )  (4.5) 

(S4 is the symmetric group of rank 4) let us start from the definitions r1 := y, rz := x- 'yx ,  
r3 := x - ~  yx2.  One can show by using the defining relations of x4 = yz  = (x y)3 = id,  
that (r, r ~ ) ~  = (rz r3)? = (rl r3 )2 = id .  For the proof that S4 := (rl , rz, r3 ; rf = ri  = r: = 
(rl r ~ ) ~  = (rz r3)3 = (r1 r3)* = i d )  we refer to [4, chapter I, Bsp 19.71. Thus, S, E ( x ,  y). 
On the other hand, the relation (x .  y) E S4 is valid, since x = r3rzr1, y = i-1. Hence, 

In [14] one can find a determination of all possibilities of choosing Ker(p) so that Jmb) 
is a finite non-cyclic subgroup of SO(3) by a combmatorical approach. For the results we 
refer to the appendix. 

S4 := ( X ,  y; x4 y2 = ( x Y ) ~  = id).  
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SU(3)-representations corresponding to the defining relations (4.4) resp. (4.5) are given 
by (CY := 2 x  pln ,  gcd(p, n) = 1, 7 := (1 + d ) / 2 )  

((A o o ),( cosa sinrv 

0 )) D. := -1 0 sincr -COSCY 0 
0 0 -1 0 0 -1 

T :=(( 0 0 1  1 0 o ) . ( i  ;1 !l)) 

0 1 0  
0 0 1  1 0  0 

0 1 0  
U :=(( 1 0 o ) . ( o  0 1  0 4)) 0 

Y :=(;( 7-1 5 5-1 1 - 7 - 1 ) . ( ;  1 8 ”),. -1 7 0 1 0  

In the case of Dn the S0(3)-representations with defining relations (4.4) which are 
not U(3)-equivalent correspond to different choices of p in (4.6). Each automorphism 
of T and U can be representated by a conjugation with an element of U.  Thus, (4.6) 
determines each S0(3)-representation of T and U with defining relations (4.4) resp. (4.5) 
up to SU(3)-equivalence. 

The case of Y is a little bit more complicated. Since the group of automorphisms of A5 
is S5, there exists a second generating set of As, which corresponds to the defining relations 
x5  = y 2  = (x  = id, and which is not SU(3)-equivalent to (4.6); this is 

-1 -7 

1 -7 -7-1 1 7 

Generating sets of the corresponding SU(2)-representations of the binary dihedral resp. 
binary polyhedral groups are given by ( p  := x q/n, gcd(q, n) = 1,7 := 1 + A / 2 )  

DE:=((  O i  o ) ’ (  i$ i y ) )  

(4.8) 

In order to obtain generating sets of the binary dihedral resp. binary polyhedral groups 
which correspond to other defining relations one can use the corresponding substitution rules, 
because ll is a homomorphism. proceeding in this manner, it remains only to Write down 
the different possibilities of choosing the signs of the matrices, then we have determined 
all generating sets of the binary dihedral resp. binary polyhedral groups up to SU(2)- 
equivalence. 
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5. Fibonacci orbits on finite subgroups of SU(2) 

5.1. General remarks 

The elements MO = $(a) and MI = $(b) together with recmence relationi3.2) determine 
a Fibonacci orbit completely. Two Fibonacci orbits (M.,n E NO) and (M, ,n  E NO) are 
called SU(Z)-equivalent, if there exists g E SU(2), s. t  g-'M,g = M,, for each n E NO. 
Particularly, the Fibonacci orbits are SU(2)-equivalent if and only if the generating sets 
( M o , M l }  and ( f i o , k ~ )  are SU(2)-equivalent. Thus, because we have determined all 
generating sets of finite subgroups of SU(2)  up to SU(Z)-equivalence, the determination 
of all Fibonacci orbits on finite subgroups up to SU(Z)-equivalence is reduced to simple 
matrix recursions. As we mentioned in section 4, the Fibonacci orbits on finite groups are 
always periodic. Hence, according to definition 3.2, carrying out the matrix recurrence until 
M p  = MO and Mp+l = MI, we know the entire Fibonacci orbit. 

Because the matrix recurrence (3.2) is invertible (cf equation (3.3)), each set ( M j ,  Mj+l) 
is a generating set of the group (MO, MI). Thereby, it is easy to check to which equivalence 
class a gFnerating set belongs. Sutherland [I31 has shown, that the generating sets (X, Y )  
and (2, Y )  are SU(2.C)-equivalent if and only iftheequations h(X) =U(.?), h(Y) = tr(?), 
and tr(X Y )  = U(.? ?) are valid. Therefore, the equivalence class of generating sets can be 
determined by the calculation of the traces. 

We have shown in section 3, that odd periods require K(M0, MI) = f l z .  It follows 
from K(M0, MI) = 12, that (MO, MI ) is a cyclic group. Assume that K(M0, MI) = -12, 
then i l ( ( M o , M ~ ) )  must be an Abelian subgroup of SO(3) but ( M 0 , M l )  has to be a 
Nonabelian subgroup of SU(2). As a consequence, (MO, MI ) must be the binary dihedral 
group 0;. Therefore, odd periods are only possible if (MO, MI ) is a cyclic group or the 
binary dihedral group D;. 

The case that (MO, M1 ) is a cyclic group, is treated in the next subsection. For results 
relating to Fibonacci orbits on the noncyclic finite subgroups of SU(2) we refer to the 
appendix. 

5.2. Fibonacci orbits on C, 
As we have shown in section 4.2, each generating set of C, is SU(2)-equivalent to a 
generating set of the form 

O >) 
c, = (( dk j l r r  0 ei2nr/rt 

0 e-i%j/rs ) 9 ( 0 e-ibk/rr 

with n = r s i, gcd(s, i) = gcd(j, rs) = gcd(k, r t )  = 1. Using the (generalized) Fibonacci 
numbers, which are defined by f: = 0, ff = 1 und f,+l = f,"-, + f," (n E N), we can 
write M p  as 

where y = (27r/r)((j/s)& + ( k / t ) f j ) .  Thus, the condition of definition 3.2 that a 
Fibonacci orbit has period p can be written as a system of linear equations: 

This system of linear equations can be solved by calculating the Fibonacci numbers and 
checking which combinations of j ,  k, r, s, and t satisfy (5.2). On the other hand, by using 
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the fact that (5.2) is an eigenvalue problem in the commutative ring Z/nZ, one can find 
some restrictions on period p .  Because 
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we obtain the following condition: 

mad00 f," ) = 1 - + f,"+i) + (-1)P. 
fj+l - 1 

0 = det (5.4) 

Regarding the assumption gcd(j,s) = gcd(k,t) = 1, equation (5.2) together with the 
recurrence relation of the Fibonacci numbers results in f,"-l = as t ,  f;+l = b s I, where 
a, b E Z. Thus, the characteristic polynomial (5.3) can be taken in the form 

(5.5) 
It follows from this equation that odd periods imply s t = 1 or s r = 2, i.e. odd periods are 
only possible if either both generators are of order n or if one generator is of order n and 
the other is of order n/2  (which implies that n is even). 

Another restriction follows from the investigation of the case n = s, r = t = 1, that is: 

mad(*) (-1)p-1 = (a+b)st .  

mcd(n) One can check by a simple computation that in this case f,"-l - 1 0, f," m2) 0, and 
f,"+l - 1 = 0. Consequently, Equation (5.2) is satisfied for each choice of j ,  f, k, r ,  s 
and t ,  where n = rst .  

Therefore, in order to determine the period of the Fibonacci orbits, it is reasonable to 
start from the case (5.6), where the period p mnst be even for n # 2. Subsequently, the 
investigation of periods can be reduced to the divisors of p .  

mad(n) 

6. The quasiperiodic spin echo 

This section deals with an interpretation of the well known spin-echo experiment as 
periodic dynamics on a binary dihedral resp. a dihedral group. Furthermore we describe a 
quasiperi2dic version of the spin echo experiment. 

Let E be a time-independenf homogeneous magnetic field in direction of the x3-axis 
and a radio-frequency electromagnetic field of frequency wj2x  circularly polarized about 
an axis in the x1 xz-plane. Then the Hamiltonian of a spin-+-particle has the form 

where Bi E R. According t G  13, p 1581, we obtain the following formula for the time 
evolution operator under resonance conditions: 

(6.2) 

with w = -(ge/2mc)B3, 01 = -(ge/4mc)l& + i& I, eiP = ( E t  + iBd/IBI + & I .  The 
expectation of the magnetic moment is given by 

(6.3) 

cos(a! t )  e - W Z  -i sin(o! t) &W2+8) 
u(O = -i sin(a! t )  ei(af/z)+B cos(a! t )  eiwr/2 ( 

%) = P i  ( t ) ,  E2 ( 9 9  E3 (9) 
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where E k  (r) = (fJ(t), uk fJ(t)) = (6(0), U - l ( t )  uk U ( t )  fJ(0)). 
investigate some specid choices of d. 

off, i.e. BI = B2 = 0. Then 

In the sequel, we 

Let us consider the case of free precessing in which the radi,o-frequency field is switched 

(6.4) 

( p  = (rrj2) &/)E1 -I- iB2 1 -I-,@. This case is called a-pulse because the time evolution of 
the expectation 

can be interpreted as a rotation through an angle of 180" about an axis in the x1 xz-plane. 
Note that the matrix of (6.4) together with the matrix of (6.6) is a generating set of a binary 
dihedral group. Since the expectations Ck are linear functionals which are transformed 
in the same y a y  as the OX'S  under the action of the SU(2)-matrices, the transformation 
matrices of Z are the same as would obtained by using the homomorphism n, which is 
described in section 4.1. Thus, the matrices of (6.5) and (6.7) are a generating set of a 
dihedral group. 

The n/2-pulse is defined analogously to the n-pulse, i.e. ut = n/4. The time evolution 
of the expectations is given by 

( i ; ) ) = (  sin2A 0 cos21 0 - I ) (  0 2;) (6.8) 

The spin echo experiment is carried out in the following way: take protons in 
water and switch on a homogeneous magnetic field in the direction of the x3-axis. If 
kT << -geB3/4mc then in the thermodynamic equilibrium the expectation C3 is nomro  
while 21 and are zero. Because of the multitude of protons we can identify expectations 
and relative frequ:ncies, i.e. the magnetization of the system consisting of N protons is 
given by M = NZ. 

Now, let us carry out a $-pulse. Assume that the f-pulse ends at time t = 0. Then, 
according to (6.8), the magnetization is non-zero in the x1 x2-plane and zero in direction of 
the xg -axis. In the periodic spin echo experiment the system passes altematingly through 
two types of intervalls, called b and a. In the interval b the protons precess freely while 
the interval a is a n-pulse. 

cos2A -sin2A 0 

with A = ( n / 4 )  B3/IB1 + BZ I + B. 
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We start at time t = 0 with an interval of type b. Because of the inhomogeneities of 
the magnetic field in the water there exists no definite an,dar velocity but a spectrum of 
velocities, i.e. after the interval b we obtain the magnetization: 

) d o  ( ii ) (0) cos(ub) sin(ub) 0 
cos(ub) 0 

0 1  
(6.9) 

where f is a distribution. To illustrate this time evolution we choose M* = M1 f iMz: 
m 

M+ (b) = lm f(u) e-iob d u  M+ (0) 

M- (6) = J f(u) eiob ciw M- (0) . 
m 

-m 

Thus, M+ and M- have the same time evolution as wave packets in quantum mechanics: 
they disperse. This implies that MI (b) and Mz (b) are zero, too. M3 (6) is zero because 
M3 (0) is already zero. 

Subsequently, carrying out a ir-pulse, the magnetization after the interval b o a is 

) d o  ( i i ) ( O ) .  cos(ub) sin(&) 0 

0 -1 
( ) (boa )  = I-", f(u) 

We have chosen p = 0, which corresponds to a special choice of the dmction of the field. 
Now, let the particles precess freely again. Assume that the Lannor frequency of each 

particle is the same as in the beginning, then the magnetization after b o a o b is given by 

Therefore, after the sequence b o a: b we can measye a macroscopic magnetization 
again. As a consequence, the equation M(b oa  o boa)  = M(0) is valid. The time evolution 
in the interval b o  a o b  o a is shown in figure 1. 

Note that, because aba = b-', the spin echo experiment is a realization of a system 
with reversing symmetry (cf [ 111). 

A quasiperiodic version of this experiment can be executed in the following manner. 
Let the intervals ZO and I1 be given by ZO := a and Z1 := b, where a and b are 
defined as mentioned above. Applying the recurrence relation of the Fibonacci sequence 
(I.+I = Zn o In-l (n E N)) we can build the Fibonacci chain. For instance, the intervals 16 
and I7 have the form: 

I6 = b a  b b a  b a  b b a  b b a  
Z 7 = b a b b a b a b b a b b a b a b b a b a b  

(6.11) 
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Figure 2. The sequence starts at i = 0. The 
numbers of the mows show the succession of the 
intervals. 

Starting with a $-pulse, we obtain again a magnetization in the x1 xz-plane. Let this pulse 
end at t = 0. Reading 17 from the left to the right, we obtain a time evolution of the 

One can easily check that the period of the Fibonacci orbit is 6, since 
G ( I 6 )  =$(Io)  and G(Z7) = G(I1). 

So far, we have described the protons as isolated particles. But in reality there are 
proton-proton and proton-water interactions. These interactions result in a relaxation 
process, which implies a decreasing magnitude of the magnetization in the X I  xz-plane. 
A mathematical description of this problem as well as the details of the experiment can be 
found in Abragam [l]. 

.Another problem of a measurement is that the Fibonacci orbits of the binary dihedral 
groups correspond to the hyperbolic orbit (0, y ,  0.0, -y, 0) of the Fibonacci trace map (cf 
[ll]). As a consequence, the Fibonacci orbit is unstable, too. Thus, if the measurement is 
possible at all, we have to measure by sectors, e.g. we measure the first six intervals and 
then start again with a $-pulse. 

magnetization which is illustrated in figure 2. ~. 

7. Concluding remarks 

In this paper we started from an interpretation of the Fibonacci sequence as the set of 
all positive powers of an element of the group of automorphisms of the free group FZ 
applied to a generator of Fz. The Fibonacci sequence was mapped by homomorphisms 
into finite subgroups of SU(2) ,  where the images of the Fibonacci sequences are called 
Fibonacci orbits. By introducing an equivalence relation between generating sets resp. 
Fibonacci orbits we reduced the determination of all Fibonacci orbits to the statement of a 
representative of each equivalence class and a simple matrix recurrence. 

As an application we described a two-level system which possesses a quasiperiodic 
structure. The quasiperiodic structure was a Fibonacci sequence built of two types of time 
intervals. So, the time evolution of the system became a quasiperiodic SU(2)-dynamics. 
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Appendix A. 

The Appendix is arranged in the following way. In section A.l we give the substitution 
rules which one needs to go from the generating sets in section 4.3 to generating sets of the 
same non-cyclic finite subgroups of SU(3) with other defining relations. The content of 
the other sections of the appendix is the characterization of Fibonacci orbits in the binary 
dihedral and binary polyhedral subgroups of SU(2).  

Appendix A. 1. The generating sets offutite non-cyclic subgroups 

In this section we proceed in the following manner. For each finite non-cyclic subgroup of 
SU(3) we call [ x ,  y) the generating set which fulfils the defining relations of section 4.3. 
Starting from these generating sets we gave all possibilities of choosing generating sets 
which correspond to other defining relations up to such transformations which are described 
in lemma 4.1. Particularly, the substitution rules are given. 

In the case of the dihedral groups each generating set fulfi!s the defining relations 
x2 = y2 = (xy)" up to the permutations described in lemma 4.1. So, we can restrict 
ourselves to the binary polyhedral groups. 
(i) The tetrahedral group T :  

T := ( X I .  yl; ( x ~ ) ~  = = (XI y1)3 = ( x : y ~ ) ~  = id) with XI := xy y1 := x 

(ii) The octahedral group U: 

0 := (XI, yi; (xd4 = ( y d 4  = ( X I  yd3 = = id) with xl := x yl := x-'y, 

(iii) The icosahedral group Y :  

Table Al. 

Appendix A.2. The orbits on D,* 
Suppose that one fixes the variable q under the constraint gcd(q,n) = 1; then 0,' has 
three generating sets up to SU(2)-equivalence. Firstly, we regard the cases in which the 
Fibonacci automorphism is of the form pz+l with (4 E Z). Because in these cases the 
period is always 3 or 6, the following table characterizes the Fibonacci orbits completely. 
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Particularly, given a suitable q ,  each Fibonacci orbit is the following one up to SU(7.)- 
equivalence and up to the choice of the starting point. To facilitate the determination of the 
equivalence classes ofthe generating sets we state the traces x := ftr(~.) ,  y := i t r ( ~ & + l ) ,  
and z := $r(M,+l Mn) ( E ( x )  := exp(i:x)). 

Note that the Fibonacci orbit on the infinite binary dihedral group DL has period 6, 
too. 

Provided that the Fibonacci automorphism i s  ,m (e E Z) and that we have chosen a 
suitable q, then there exist two Fibonacci orbits up to SU(2)-equivalence and up to the 
choice of the starting point: 

In this case the period is 4. 
(ii) 
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The period p of these Fibonacci orbits is 

H Wagner and P Kramer 

.. 

If we proceeded with the binary polyhedral groups T*, 0' and Y' in the same fashion as 
we did in the case of 0:. we would produce an amount of data which would be confusing 
rather than instructive. Thus, we confine ourselves to the Fibonacci orbits which belong 
to the automorphism pi. Additionally, for the sake of brerity, the information about each 
Fibonacci orbit up to SU(2)-equivalence and up to the starting point is reduced to a possible 
starting point and the period of the Fibonacci orbit. 

Appendix A.3. The orbits on T* 

(i) Starting point: 
MO=(!  6 )  M I = ! (  I + i  - l + i  

2 l + i  1 - i  

Period: 48 
(U) Starting point: 

MO=( O i  o )  M I = - -  

Period: 16 

Appendix A.4. The orbits on O* 
(i) Starting point: 

1 > 1 + i  -1+i  
2 l + i  1 - i  

Period: 18 
(ii) Starting point: 

Period: 18 

Appendix A.5. The orbits on Y" 

(i) Starting point: 
1 -++ i l + i  - l + i  

MO = -5 ( r-F+i 5 

Period: 50 
(ii) Starting point: > -  MI = 1 ( l + i  -1+i 

2 l + i  1 - i  
-%-I 

5 

Period: 150 
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(iii) Starting point: 

Period: 14 
(iv) Starting point: 

Period 14 
(v) Starting point: 

Period 42 
(vi) Starting point: 

l + i  - I + i  
1 - i r  

1 + ir-' MO = -1 ( 
2 i r  

Period 42 
(vii) Starting point 

Period 4 
(viii) Starting point: 

Period: 12 
(ix) Starting point: 

Period 50 
(x) Starting point: 

Period: 150 
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